Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses.
نویسندگان
چکیده
The primary goal was to test the hypothesis that agonist-induced corticotropin-releasing factor type 1 (CRF(1)) receptor phosphorylation is required for beta-arrestins to translocate from cytosol to the cell membrane. We also sought to determine the relative importance to beta-arrestin recruitment of motifs in the CRF(1) receptor carboxyl terminus and third intracellular loop. beta-Arrestin-2 translocated significantly more rapidly than beta-arrestin-1 to agonist-activated membrane CRF(1) receptors in multiple cell lines. Although CRF(1) receptors internalized with agonist treatment, neither arrestin isoform trafficked with the receptor inside the cell, indicating that CRF(1) receptor-arrestin complexes dissociate at or near the cell membrane. Both arrestin and clathrin-dependent mechanisms were involved in CRF(1) receptor internalization. To investigate molecular determinants mediating the robust beta-arrestin-2-CRF(1) receptor interaction, mutagenesis was performed to remove potential G protein-coupled receptor kinase phosphorylation sites. Truncating the CRF(1) receptor carboxyl terminus at serine-386 greatly reduced agonist-dependent phosphorylation but only partially impaired beta-arrestin-2 recruitment. Removal of a serine/threonine cluster in the third intracellular loop also significantly reduced CRF(1) receptor phosphorylation but did not alter beta-arrestin-2 recruitment. Phosphorylation was abolished in a CRF(1) receptor possessing both mutations. Surprisingly, this mutant still recruited beta-arrestin-2. These mutations did not alter membrane expression or cAMP signaling of CRF(1) receptors. Our data reveal the involvement of at least the following two distinct receptor regions in beta-arrestin-2 recruitment: 1) a carboxyl-terminal motif in which serine/threonine residues must be phosphorylated and 2) an intracellular loop motif configured by agonist-induced changes in CRF(1) receptor conformation. Deficient beta-arrestin-2-CRF(1) receptor interactions could contribute to the pathophysiology of affective disorders by inducing excessive CRF(1) receptor signaling.
منابع مشابه
Phosphorylation of C3a Receptor at Multiple Sites Mediates Desensitization, β-Arrestin-2 Recruitment and Inhibition of NF-κB Activity in Mast Cells
BACKGROUND Phosphorylation of G protein coupled receptors (GPCRs) by G protein coupled receptor kinases (GRKs) and the subsequent recruitment of β-arrestins are important for their desensitization. Using shRNA-mediated gene silencing strategy, we have recently shown that GRK2, GRK3 and β-arrestin-2 promote C3a receptor (C3aR) desensitization in human mast cells. We also demonstrated that β-arre...
متن کاملThe Phosphorylation of CCR6 on Distinct Ser/Thr Residues in the Carboxyl Terminus Differentially Regulates Biological Function
CCR6 is a G protein-coupled receptor (GPCR) that recognizes a single chemokine ligand, CCL20 and is primarily expressed by leukocytes. Upon ligand binding, CCR6 activates Gαi heterotrimeric G proteins to induce various potential cellular outcomes through context-specific cell signaling. It is well known that differential phosphorylation of Ser and Thr residues in the C-terminal domains or intra...
متن کاملArrestin variants display differential binding characteristics for the phosphorylated N-formyl peptide receptor carboxyl terminus.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding in...
متن کاملDistinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ß-arrestins
The growth hormone secretagogue receptor, GHSR1a, mediates the biological activities of ghrelin, which includes the secretion of growth hormone, as well as the stimulation of appetite, food intake and maintenance of energy homeostasis. Mapping phosphorylation sites on GHSR1a and knowledge of how these sites control specific functional consequences unlocks new strategies for the development of t...
متن کاملTwo serines in the distal C-terminus of the human ß1-adrenoceptor determine ß-arrestin2 recruitment
G protein-coupled receptors (GPCRs) undergo phosphorylation at several intracellular residues by G protein-coupled receptor kinases. The resulting phosphorylation pattern triggers arrestin recruitment and receptor desensitization. The exact sites of phosphorylation and their function remained largely unknown for the human β1-adrenoceptor (ADRB1), a key GPCR in adrenergic signal transduction and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007